ASHLAND.

Perspectives on Thermoset Composites Use in the Global Automotive Market FEIPLAR – Saõ Paolo, Brasil

Presented by Cedric Ball Ashland Performance Materials November 2008

Contents

- Automotive Environment
- Current Thermoset Composites Use
- Customer Needs
- Outlook for Composites Growth
- Latest In Developments In Thermoset Composites

The 2008 Global Financial Crisis

The automotive industry is facing the most complex challenges in its history. Never has it been more crucial for suppliers, automakers and retailers to adjust, adapt and overcome these challenges.

Market Dynamics

- U.S. Economy Struggling
- Crude Oil And Raw Material Volatility
- Manufacturing Migration To Emerging Markets
- Increasing Emphasis On The Environment

Market Drivers & Trends

Global Light Vehicle Production

Transportation Market Light Vehicle and Heavy Truck Applications

*Sources: E-Composites 2004-2010, p147., Skeist, PGPhillips, American Foundry Society, Ashland Estimates All figures are OEM sales plus aftersale parts and services. Rail is rolling stock only.

Composite Resins for Light Vehicle & Heavy Truck End Use Segments

*Sources: E-Composites 2004-2010, p33, p167 and Ashland Estimates

Market Acceptance of Composites

Plastics & Composites Use "Average" Pounds per Vehicle – North America

Sources: Market Search, Inc. Automotive Plastics Report; Ashland, Inc.

The trend for composites is toward greater use.

Materials Use on a Typical Vehicle

Percent Materials Value of Typical Light Vehicle

Sources: American Chemistry Council, US Bureau of Economic Analysis, Center for Automotive Research, Ashland Estimates

Market Acceptance of Composites

Composites Product Life Cycle vs. Competitive Materials

Composites is a growth stage materials industry gaining acceptance.

Cascade of Needs in Transportation

Composites Growth Challenges

- Invested Capital is Based On Steel and Mass Production Economics
- Lack of Awareness and Standardization of Composites
- Lack Of Predictive Engineering Tools/Data
 - Non-linear, Non-isotropic Behavior
 - Difficult Prediction of Fiber Orientation, Placement And Concentration (SMC/BMC)

Why Be Optimistic? Reason #1

- Volumes <u>Decreasing</u>; No. of Models <u>Increasing</u>
- New Assembly Plants Are More Flexible
- SMC Body Panels Are More Cost Effective Than Steel at Lower Volumes

Why Be Optimistic? Reason #2

- OEMs Desperately Seeking Lower Cost; Better Performing Alternatives
 - Composites Offer Greater Design Flexibility Than Steel
 - Lower Weight For Same Or Better Performance
 - Lowest Total Cost In Many Situations
- Material Suppliers, Institutes And Universities Are Educating Engineers About Composites
- Next Step Needed: Greater Characterization and Standardization of Materials

Why Be Optimistic? Reason #3

- Predictive engineering tools becoming more available and accurate
 - MoldFlow®
 - CadPress® (Madison Group)
- Material Suppliers, Institutes And Universities Are Characterizing Composite Materials
 - MatWeb®
 - IDAC Non-Linear Materials Library
 - NASA®

Latest Thermoset Developments

- Tough Low Density SMC
- UV-Stable Mold-In-Color SMC
- SMC/BMC Process Control Technology
- Renewable Resource-Based Resins

AROTRAN 720/740 Low Mass SMC

- Customer: Ashland
 Distribution Company
- OEM: Navistar International
- Production: 2008
- Molder/Compounder: Core Molding Technologies
- Resin: AROTRAN 720 tough low mass Class A system at 1.55 s.g vs. 1.9 s.g.
- Original Part Wt: ~100 lbs.
- Actual Part Weight: 80 lbs.

UV-Stable SMC Weathering

(SAE J1960) 35% Fiberglass

Original Lo

Low Shrink

Original

Low Shrink

2000 hrs

4000 hrs

Weatherable SMC Field Evaluations

Weatherable
Mold-In-Color SMC
Truck Box On Vehicle
Since August 2001

SmartTrac® Control Technology

Determines the precise moment of cure in a thermoset resin or compound via impedance monitoring

- Benefits to a molder include:
 - Shorter cycle time
 - Less molding scrap
 - Faster troubleshooting
 - Better productivity
 - Lower cost

SmartTrac® Control Technology

The desibilities of starts and ithis children so the interest of the most interest of the impedance value to increase.

Batch to Batch Variation

Where Is The Technology Used?

ENVIREZ® Soy & Corn-Based Resins

OEM: John Deere

Model: 9650 Combine

Application: Engine Panels

SOP: Current

• Vehicle Volume: 3,500

Formulator: CSP

Molder: Ashley Industrial

Technology: SMC

Material:

Patented ENVIREZ® renewable resource resin

Part wt: 36 lbs./ 16 kgs.

ASHLAND. Thank You!

Various parts molded by customers Meridian Automotive Systems, Continental Structural Plastics and Molded Fiber Glass companies using **AROTRAN®** resins and **NEULON®** low profile additives from Ashland.

Various parts molded by customers Meridian Automotive Systems using **AROTRAN®** resins and **NEULON®** low profile additives from Ashland.

- OEM: Chrysler LLC
- · Model: Dodge Viper
- Application:
 - Fender reinforcement
- SOP: Current
- Vehicle Volume: 1,500
- Technology: CF-SMC
- · Material:
 - AROTRAN® 300 carbon-fiber compatible resin system
- Part wt:

Various parts molded by customers Meridian Automotive Systems, Continental Structural Plastics and Molded Fiber Glass companies using **AROTRAN®** resins and **NEULON®** low profile additives from Ashland.

Various parts molded by customers Meridian Automotive Systems using **AROTRAN®** resins and **NEULON®** low profile additives from Ashland.

AROTRAN 700/755 In Production

Parts on the 2008 Freightliner Cascadia
Using Ashland AROTRAN® 700-series Tough Resin

Description
Roof bow front, XT
Roof bow center XT, 72"
Roof bow center XT, 60"
Roof bow center XT, 48"
Roof skin, rear, XT, 72"
Roof skin, rear, XT, 60"
Roof skin, rear, XT, 48"
Roof rein, ctr, upper, 72" RR P3
Roof rein, back, 72" RR P3
Rocker panel assy, slpr, front, LH/RH
Rocker panel assy, day cab LH/RH
Rocker panel assy. Day cab LH 60"
Rocker panel assy. Day cab RH 60"
Rocker panel assy. Day cab LH 48"
Rocker panel assy. Day cab RH 48"
Rocker panel assy, slpr, 72" RR, LH/RH
Rocker panel assy, slpr, 60" RR, LH
Rocker panel assy, slpr, 60" RR, RH
Rocker panel assy, slpr, 48" RR, LH
Rocker panel assy, slpr, 48" RR, RH
Cowl assy, 125 bbc, LH/RH
Roof bow side, XT, LH/RH
Roof bow rear, XT, LH/RH
Roof reinf, front lower P3
Roof reinf, side lower 72"; LH/RH
Roof rein. CBMR, Mid, RR, P3
Roof window reinf, 72" RR P3, LH/RH
Roof window reinf, 60" RR P3, LH/RH
Hood reinforcement (via Meridian)

- OEM: Hyundai Motors
- Model: Various
- Application: Luggage Doors
- SOP: Current
- Vehicle Volume: 10,000
- Molder: Hanguk Mold Co.
- Compounder: Hanwha
- Technology: SMC
- Material: AROTRAN® 611
- Approx. Part Wt: 16 lbs / 8 kg

OEM: A.R.E.

Model: Various

Application: Truck Caps/Covers

SOP: Aftermarket

 Vehicle Volume: ~150,000/year total of various models

Technology: Open Molding

 Material: AROPOL® Resins and ENGUARD® sanding gel coats

Model: MRAP Military Vehicle

 Application: Hood Assembly (non-ballistic)

SOP: Current

• Vehicle Volume:

 Molder/Compounder: Core Molding Technologies

Technology: SMC

Material: AROTRAN® 625

Part Wt: 100 lbs.

Molded by Meridian Automotive Systems using **AROTRAN®** resins and **NEULON®** low profile additives from Ashland.

Pontiac Solstice / Saturn Sky
Composite Rear Compartment
and Floorpan
uses AROPOL® Q 6266

Molded by Molded Fiber Glass Companies using **AROTRAN®** resins and **NEULON®** low profile additives from Ashland.

Molded by Continental Structural Plastics using **DERAKANE®** epoxy vinyl ester resin only available from Ashland.

Molded by Continental Structural Plastics using **DERAKANE®** epoxy vinyl ester resin only available from Ashland.

Toyota Tacoma® Composite Bed

All components made with **DERAKANE®** epoxy vinyl ester resins only available from Ashland, Inc.

Ridgeline® Rear Compartment

Molded by Meridian Automotive Systems using **DERAKANE®** epoxy vinyl ester resin only available from Ashland.

Ridgeline® Rear Compartment

Molded by Meridian Automotive Systems

Nissan Sentra Divide-N-Hide™ trunk system Molded by Meridian Automotive Systems (USA)

Divide-N-Hide™ trunk system

OEM: Nissan

Model: Sentra

Application: Trunk Divider

SOP: Current (Option)

Vehicle Volume: 75,000

 Molder/Compounder: Meridian Automotive Systems

Technology: SMC

Material: AROTRAN® 618

Part Wt: 10 lbs. / 4.5 kgs.

OEM: Volvo

Model: VN 730

 Application: Reinforcement -Hood Inner

SOP: Current

Vehicle Volume:

Compounder / Molder:
 Meridian Automotive Systems

Technology: SMC

Material: AROTRAN® 618

Part wt: 40 lbs. (inner only)

Valve cover material compounded by Bulk Molding Compounds, Inc. using **DERAKANE®** epoxy vinyl ester resin only available from Ashland.

• OEM: Ford Europe

Model: DuraTorq[™] TDCi

Application: Valve Cover

SOP: Current

Molder: Dana Victor-Reinz

• Compounder: Polynt

Technology: BMC

Material: DERAKANE® 780

Mack MD-11 composite valve cover molded by Meridian Automotive Systems.

Application Example *McNeilus*

OEM: McNeilus

Model: Revolution

Application: Mixing Drum

SOP: Current

Vehicle Volume: 1,000

Fabricator: McNeilus

Technology: Filament Winding

Material:

Includes HETRON® corrosion resistant vinyl ester resin

Part wt: 2,450 lbs.

