

"High Performance Glass Fibers"

David Hartman

10 November 2008

ABMACO International Conference

OCV Reinforcements

DELIVERING SOLUTIONS | TRANSFORMING MARKETS | ENHANCING LIVES

OCV Reinforcements 70 Year History of Leading Innovation

- E glass in 1939
- C glass in 1943
- W1 and W2 in 1965
- S glass in 1968
- R glass in 1968
- AR glass in 1974
- ECR glass in 1980
- High alkali E glass in 1984
- Advantex glass in 1997
- H glass in 2004
- HPG glass in 2007

Glass and Melting Technology Innovation

- Boron added to glass for electrical properties
- 1968: OCV developed S-2 Glass®
 - High Performance Glass (high melting power needed)
 - Small capacity furnaces due to limits in melting technologies
- 1980: OCV developed ECR Glass®
 - Acid Corrosion resistant glass.
- 1997: OCV developed Advantex® Glass and Technology
 - Boron free E-glass (higher melting power than traditional E-Glass)
 - ECR-glass (Superior corrosion resistance to traditional E-glass)
 - Breakthrough in melting technology for large capacity furnaces
- 2006: OCV developed High Performance Glass Technology
 - Combines High-Performance Glass and Melting Technology
 - Production of High-Performance Glass in <u>large capacity furnaces</u>

High Performance Glass

Breakthrough in advanced Glass Melting Technology

Up to 40% increased strength

Up to 20% increased modulus

Up to 30% lower coefficient of linear thermal expansion

Up to 10x better fatigue properties

Superior corrosion resistance

Higher temperature resistance

With Environmental Stewardship

Reduced Emissions during Glass Production

Less Particulate - No Boron Less CO₂, NOx, HF No Scrubbers => Eliminating Secondary Waste Stream

Less Energy consumption

Advanced Glass Manufacturing Techniques Batch Formulation

Longer Life for Composite Structure

A demonstration of industry leadership

High Performance Reinforcements Product Line

WindStrand™ Reinforcements
FliteStrand™ Reinforcements
ShieldStrand™ Reinforcements
XStrand™ Reinforcements

Available as single end rovings or fabrics.

Product Offerings by Market

Owens Corning High Performance Reinforcement Platform

High Performance Market Trends

Segment	Estimated Growth %	Growth Drivers
Wind Energy	20	 Need for clean renewable energy (reduction of GHG) Increase global energy consumption
Ballistics	10	Increase in global warfare & terrorism Light weight solutions to combat increasing threat
Industrial	10	Clean efficient fuel source Increasing safety standards
Aerospace	15	Increase cost of fuel
Sports & Leisure	4	Lower cost High Performance solutions
Marine	4	High cost of fuel

An emerging opportunity growing at 16% CAGR

Lightweight Composite Armor Market

Application Mobility and Ballistic Lethality Drives Performance

Rapid Deployment and High Mobility Drives Need for Paradigm Shift

Key Message to Meet Warfighter Needs

Save life and limb

Warfighter Mission

- Protection against blast and fragmentation
- Performance improved with vehicle mobility
- Payload capacity increased
- **Supports Future Combat Systems**
- Lighter, faster, more fuel efficient vehicles
- Higher survivability at a reasonable price

ShieldStrand[™] Composite Armor Solution

Warfighter Needs Solution for Mine, IED and EFP - Blast and Fragmentation Protection

Ref: BAE Systems, AMGeneral₁₁

Benefits of ShieldStrand[™] Armor Solutions

Tangibles - Mitigates Behind Armor Debris from Fragmentation and Overmatch Threats of IED, EFP

- Stronger
- Lighter
- Thinner
- Durable
- Affordable
- Consistent Supply Chain
- Phenolic Fire Resistance
- Ballistic Performance to Specifications for Composite Armor Systems MIL-PRF-64154
- Qualified for Spall Liner, Frag 5, Frag 6 and EFP

Benefits of ShieldStrand[™] Armor Solutions

Intangibles – Heritage of Proven Spall Liner Field Performance and Prototype Structural Armor Hull Performance for Aluminum and Steel Substitution

- Depot / Field Installation Capable
- Battle Damage and Repair Field Maintenance Capable
- Flat or Curved Plate or Complex Shape Demonstrated
- Installs with Fastener Systems typical to Metals
- Surface ready for CARC or adhesive for Metal and/or Ceramic Bonding / Joining
- No Corrosion or galvanic corrosion
- Good Durability to Vehicle Environment
- Complies with FMVSS 302 Flammability

ShieldStrand[™] Higher Strength Fiber

Introduced in 2007 HP Glass ShieldStrand™ Improves Composite Armor Performance and Affordability

Improvement over E Glass

- Up to 40% higher strength
- Up to 20% higher modulus
- Better impact energy
- Better fatigue properties
- Superior corrosion resistance
- Higher temperature resistance
- Up to 30% better CTE

Improvement over other high performance fibers

- Affordable
- Availability, higher volume

Approved to MIL-PRF-64154 for use in Lightweight Composite Armor

ShieldStrand™ Armor Solutions spall liner similar in weight and 30% thinner than K29 aramid

Similar Weight and Thinner than K29 Aramid Spall Liner->

ShieldStrand[™] Armor Solutions Lighter and Affordable

ShieldStrand[™] Armor Solutions Lighter and Affordable

Cost Substitution Comparison Spall Liner Lighter Weight Basis

ShieldStrand[™] Armor Solutions Cost Performance

- Similar in cost to Aluminum and Steel with up to 30% reduced weight potential in typical installation kit
- Up to 50% reduced cost for S-Glass or Aramid substitution
- Substitution for E glass depends on value of weight savings

Spall Liner Cost Performance

- E glass, steel and aluminum do not meet current weight criteria
- Significant cost savings to S-Glass, Aramid and HMPE which meet weight criteria, overall savings depends on value of weight savings to mission payload.

ShieldStrand™ Armor Solutions Mitigate Behind Armor Effects of Fragmentation

Overmatch Fragment Simulation Behind Armor Debris

High Hard Steel vs ShieldStrand™ Armor Solutions

Source: H P White

Up Armored HMMWV (UAH) Requirements Increased to meet U.S. Congressional Order

Characteristics

- 360° protection against:
 - Small Arms projectiles
 - Fragments from artillery
 - Anti-tank/ anti-personnel mines

Requirement

Current Total Requirement: 18,669 vehicles

Status

- As of 19 Apr 06, 12,800 UAH in the CENTCOM AOR
- Adding MRAP vehicles for higher protection

No Soldier leaves a base in an unarmored vehicle...

ShieldStrand™Armor Solutions for HMMWV Fragmentation Kit Comparison with Aluminum

Drivers for substitution of Frag 5 kit

- Shortage of Aluminum
- Cost of 5083 Aluminum
- Spall reduction behind armor
- Potential for reduced weight
- Build more kits faster
- Reduce dependency on foreign sources

Two options per ARL

- Substitute full thickness of aluminum (risk: edge effect, attachment)
- Substitute for half thickness of aluminum (risk: behind armor effect)

Other options depending on overmatched threat

- Substitute full thickness aluminum and additional for Frag 6
- Exceed FMVSS 302 fire requirements

Cost performance versus 5083 Aluminum

Depends on weight saved after installation up to 20% savings

ShieldStrand[™] Armor Exterior Modules Ballistic Multi-threat Performance

ShieldStrand™ Armor Solutions Weight Saving Benefits

- Up to 30% weight savings versus metals
- Up to 50% cost savings versus S-Glass and Aramid
- Weight and cost savings depend on the MRAP or HMMWV vehicle kit - M1114, M1152 or M1165

Evolution of Composite Armor from flat plate to complex shapes for integration with steel

spall liners

exterior armor modules

v-hull

structural components

Compression Molded Phenolic

Infusion Molded FR Epoxy Vinylester

Evaluation of ShieldStrand™ Material and Process Parameters for Complex Shapes

Nano FR synergists allowed excellent vinylester resininfusion process resulting in good fire performance.

 QuickStep process consolidation of phenolic prepreg in complex shapes gave 90 - 95% of the ballistic performance of compression molded phenolic.

QuickStep demonstrated capability to produce 4 inch thick complex parts with reasonable process time at the National Composites Center.

ShieldStrand[™] Armor Solutions for Blast and Multi-hit Fragmentation Performance

- Effective Blast Management structurally good with minimal global deflection for up to 20lbs C4 or equivalent CB with 18 and 32 inch standoff.
- Local Deflection with Large Fragment > 94 percentile.
- FR Vinylester ShieldStrand V-hull Passed 155mm mortar buried flush with standoff at 32 inch... V-hull was then subjected to full scale diesel fuel fire test and Passed.
- Minimal Secondary Effects Behind Armor V-hull vents Blast, Composite stops fragmentation, while structure absorbs Blast energy and dissipates shock.
 - Blast Simulation Modeling at UDRI and OSU for Composite Structures with comparison to LS Dyna with Johnson Cook parameters.
 - (Ref: SwRI, BAE, AMG, ARL/ATC pending reports, DAAL04-92-C-0014, DAAL04-86-C-0079 armor reports)

Blast Resistance Simulation with LS Dyna FEA Tools for Design and Integration in Vehicles

Up Armored Add-on Vehicle Armor Kits

OGH HMMWV Kit

Produced By:

Armor Holdings Inc.

BAE Systems

M1114 UAH
Gunners Protection Kit
Produced By:

Armor Holdings Inc.
BAE Systems

ARL HMMWV Kit

Produced By:

GSIE/ARL

FMTV RACK Kit

Produced By: ESSI Inc. (Radian/SEI)

Troop Carrier Kit

Produced By:
ArmorWorks

FMTV LSAC Kit

Produced By: Stewart & Stevenson

Add-on Armor Kits for Medium Weight Tactical Vehicle Platforms

M939 Kit
Produced By:
GSIE

HEMTT Kit
Produced By:
Armor Holdings Inc.
BAE Systems

PLS Kit
Produced By:
Armor Holdings, Inc.
BAE Systems

Produced By:
Armor Holdings Inc.
BAE Systems

Produced By: Armor Holdings Inc. BAE Systems

M915A2/3/4 Kit

Produced By: VSE Corp

M969 FTSS

ASV
Produced By:
Textron

Vehicle Armor Proven Supply Chain

ShieldStrand[™] Armor Solutions Summary

- ShieldStrand[™] Armor Solutions
 Affordable Lightweight Performance
 - High strength, high modulus glass fiber available in large quantities
 - Comparable ballistic performance to S-Glass in HJ1 phenolic plates at about half the cost.
 - Substitution for S-Glass/K29 Aramid in spall liners lower cost lightweight solution
 - Replace or combine with aluminum, steel and E-glass where weight is critical and over match threat levels exist

Drivers for Substitution of Aluminum or Steel

- Shortage of metal
- Recent cost increases
- Spall reduction behind armor
- Build more kits faster
- Reduce dependency on foreign source

ShieldStrand[™] Armor Validated Supply Chain Performance

- Ballistic performance data qualified in the existing supply chain
- Fibers & fabrics are available to the existing supply chain for processing in low-cost pultrusion, continuous lamination or compression molding of flat plates and compression or infusion molding of complex shapes

Owens Corning Military Innovations

- E-glass First continuous filament glass reinforcement developed.
- Insulation for Warships (1939) U.S. Navy Bureau of Ships specified OC insulation for new ships.
- Structural Aircraft Parts (1942) OC partnered with U.S. A.A.F. to develop plastic laminates.
- Beta® yarn (1963) OC develops fiber for aerospace applications and use in NASA spacesuits.
- S-Glass® (1959-63) Developed by OC under contract with U.S. Navy.
- Piedmont Products, Inc. (1979) OC manages reinforcements plant under government contract
- OC Armor (1989) Product specified for NATO and US Military personnel carriers and first-aid trucks.
- ShieldStrand™ High Performance Reinforcements (2007)